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ABSTRACT

This thesis involves investigation of linear filtering

models as a means of generating texture in images. Various

autoregressive filter models are used to generate various

textures, and the results are analyzed to determine rela-

tionships between filter parameters and texture characteris-

tics. A two-dimensional counterpart to the autoregressive

integrated moving average (ARIMA) model from one-dimensional

time series analysis theory is developed and tested for

texture modeling applications. All these models are driven

by white noise, and to the extent that real images can be

reproduced this way, advantages in image texture transmis-

sion could be realized. Results of this work indicate that

the purely autoregressive models work well for some types of

image textures, but that for the textures studied the ARIMA

model is not particularly suitable.
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I. INTRODUCTION

The purpose of this thesis is to investigate the types

and quantity of image textures generated using a two-

dimensional (2-D) extension of the Autoregressive Integrated

Moving Average (ARIMA) model. For the one-dimensional

(e.g., time series) case, the theories and formulas describ-

ing this model are outlined in Box and Jenkins [Ref. 1:pp.

85-103]. The 1-D ARIMA model is useful when the time series

to be modeled is not stationary but exhibits some

homogeneity in the sense that, except for statistical

differences between parts of the time series, these

different parts of the process behave similarly. In these

cases some suitable difference of the process may be

stationary, and hence may be accurately modeled by an

Autoregressive Moving Average (ARMA) or a purely

Autoregressive (AR) model. The resulting stationary time

series (generated by an appropriate ARMA or AR filter with

white noise input) is applied to an integra-tion or

summation filter (the inverse of the difference operation)

to generate the original nonstationary time series. [Ref.

l:p. 85] Figure 1-1 shows a block diagram of this process.

.4This work attempts to extend these concepts to two-

dimensional signal processing. In order to simplify the

model, the moving average (MA) portion of it will be

P.
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White Moving Time
Noise Average Autoregressive Summation Series

Filter Filter Filter

Figure 1-1 Block Diagram for the Autoregressive
Integrated Moving Average Model

eliminated (i.e., no zeros in the filter Z transform) so

that only purely AR models will be considered for stationary

image generation. The procedures for modeling image

textures using AR models with white noise input are well

established [Ref. 2:pp. 454-456]. However, a suitable two-

dimensional difference operation and its inverse must be

found to implement the concepts outlined above.

The research is divided into four areas:

1) Investigation of the various types of image textures
generated using AR models where filter coefficients
and size are determined a) arbitrarily, b) using a
two-pole separable model, and c) using a four-pole
separable model. Separability refers to the fact that
the Z transform of the AR filter can be factored into
components representing each dimension or direction of
the image.

2) Selection of a difference operator and a realizable
inverse (integration or summation) filter.

3) Application of the above autoregressively generated
images to the summation filter, and evaluation of
these results.

4) Attempted reproduction of actual images textures using
AR models whose coefficients are determined using the
statistics of the image, and comparison of these
results to those obtained by a) applying the
difference operator to the real image, b) finding the
coefficients of the AR model that reproduce the
difference image, and c) applying the difference image
to the summation filter. This comparison was intended

8



to discover what improvements, if any, may be realized
using the ARIMA model vice a purely ARMA (or AR)
model.

The remainder of the thesis is organized as follows.

Chapter II contains methods and results of investigating

various autoregressive image models. Chapter III deals with

the formulation, development, and testing of the two-

dimensional summation filter. Chapter IV contains the

results of applying various AR-generated images to the

summation filter and addresses the application of the ARIMA

model to real image textures. Chapter V outlines conclu-

sions on the results and applicability of the ARIMA model.

Although the ARIMA modeling was not highly successful in

reproducing the textures studied here, plausible reasons are

given for their failure and conjectures are made about those

circumstances where the model would be more successful.

Appendix A provides information on the computer algorithms

used to implement the equations governing the above

processes. Appendices B through G contain derivations of

spectral and autocorrelation equations, and the correspond-

ing graphical results, governing the AR processes in Chapter ""

II. Appendices H and I contain graphical results associated

with the inverse filter development in Chapter III.

Image data were generated using computer programs

written in FORTRAN, compiled using Version 4.5 under the

VAX/VMS Version 4.4 operating system. The images were

displayed on the COMTAL Vision One/20. The gray level

9
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intensity range of pixel values is 0 (darkest) to 255

(lightest), so the image data generated had to be scaled to

that range for display (see Appendix A).

10



II. THE AUTOREGRESSIVE IMAGE MODEL

A two-dimensional signal (such as an image texture) can

be modeled using a two-dimensional AR model with white noise

input. The governing equations in the spatial domain are of

the following form [Ref. 3:pp. 325-326]:

P-1 Q-l
y(n,m) = - [ aijy(n-i,m-j) + w(n,m) (2.1)

i=0 j=0
(i j)(0,10)

where y(n,m) is a signal representing the generated image

texture at pixel location (n,m), aij is the filter coeffi-

cient matrix, and w(n,m) is a two-dimensional white noise

signal. The system function corresponding to the filter of

Eq. (2.1) is given by

1
Y(zl,z 2 ) = -i -i -i -(P-1) - (Q-1)

1+al0Z +a01z2 '111 z 2 +...+apiQ_ilz

W(zl z2 ) (2.2)

where zI and z2 are the Z transform variables corresponding

to spatial coordinates n and m. Ideal white noise has an

autocorrelation function that is an impulse and a flat (con-

stant) power spectrum with magnitude corresponding to the

variance of the white noise process [Ref. 4:pp. 22-26].

Therefore determination of the filter coefficients aij will

define the generated image process. Procedures will be

11i



outlined later to estimate the coefficients from real image

data. At this point analytical methods will be used to

select these coefficients and the resulting images will be

studied. Figure 2-1 shows an example of a white noise input

image.

Figure 2-1 White Noise Image

A. ARBITRARILY SELECTED FILTER COEFFICIENTS; P = 2, Q = 2

In order to get an initial idea of what types of images

might be generated using a 2 x2 AR filter with white noise

input, filter coefficients were at first selected arbitrari-

ly, but subject to a stability constraint. The primary con-

straint on coefficient selection is that of filter

stability. Using the DeCarlo-Strintzis Theorem dealing with

multidimensional filter stability [Ref. 3:pp. 197-198],

alternately setting zI = 1 and z2 = 1 and determining the

location of the pole in the remaining dimension will

indicate whether or not the filter is stable. If the

12
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magnitude of the pole in the remaining dimension is less

than 1, the filter is stable. Even with this condition,

however, there are an infinite number of possible filter

coefficient combinations. The additional constraint of

alO = a01 can be used, and comparisons of results using

various values of all can be made.

Figure 2-2 shows the form and directionality convention

used for the autoregressive filter, along with the corres-

ponding difference equation and its Z transform.

4.

h(. a) r

L a I y(n,m) =- ij-y(n-i,m-j) + w(n,m)
Si=O j=0 )n(zl) (i j f(00) f

p

1 i

Y(zlZ 2) = H(zlz 2)-W(Zlz 2) =l l l - W(zlz 2)
l+a10z1  01 2  11 z1 z2

Figure 2-2 Autoregressive Filter Impulse Response,
Difference-Equation, and Z Transform

Although it is difficult to make precise predictions in

two dimensions, one can expect that the sign and magnitude

of alO or a01 would influence the correlation between pixels

13
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in the corresponding directions. For example, a positive

value for al0 might be expected to yield an image with

substantial variation in the n direction (low correlation),

particularly if the magnitude of al0 is near 1. A negative

value for a01 with magnitude near 1 might yield an image

with lower variations in pixel intensity (high correlation)

in the m direction. Since the filter is not necessarily

separable (i.e., the denominator of H(zl,z2 ) cannot be

factored into the form D(zj)-D(z2 )), conclusions drawn from

this line of reasoning may not be completely correct.

Initial attempts at generating images with arbitrarily

selected coefficients yielded rather uninteresting results

having very little contrast or discernible pattern.

Continued experimentation with combinations where

alO = a01 < 0 eventually yielded more interesting image tex-

tures. Figures 2-3 and 2-4 show the results of using the

constraint alO = a01 = -0.35 and various values of all for

the filter coefficients. For positive values of all, the

images are rather "grainy," with higher magnitudes yielding

a somewhat "finer" graininess. There are also some overall

intensity differences observed. For the negative values of

all, the results are much more interesting. As the magni-

tude increases, there is a gradually more noticeable upper

left to lower right orientation of the image texture, and

the variations from lower left to upper right become

smoother as well. Using al0 =aOl = -0.38 and all = -0.24

14
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a10  a01  -0.35 a1 0  a01  -0.35

al1  o .8 al1l 0.5

a10  a01  -0.35 a10  a01  -035

al1  0.2 all 0.0

all - 0 1 -- 0.35 a10  a01  -0.35

a11l -0.1 all -0.2

Figure 2-3 Images Generated Using Arbitrarily
Selected Filter Coefficients



a10 - a0 1 - -0.35 a10 - a01 - -0.35

all - -0.25 a11 - -0.27

a1 0 - a01 - -0.35 a10 - a01 - -0.38

all - -0.3 al1 - -0.24

Figure 2-4 Images Generated Using Arbitrarily
Selected Filter Coefficients



S

yields minor variations in texture pattern and overall image

intensity when compared to the previous case.

Using al0 - a0 1 - 0.35 and varying all from 0.0 to 0.8

(Figure 2-5), the images obtained deviate very little from

the mean intensity value, and possess minor differences in

graininess. With these positive coefficients some negative

correlation might be expected, and the fact that these

images are "grainy" indicates the existence of some negative

correlation or high spatial frequency characteristics. On

initial examination, however, the low contrast of the

generated images tends to obscure the observed graininess.

B. TWO POLE, SEPARABLE AUTOREGRESSIVE MODEL

In general, it is difficult to relate the nature or

properties of a two-dimensional filter to the precise nature

of an image texture that may be generated when white noise

is applied to that filter. In order to simplify the effort

and to obtain a better understanding of the problem, the

case where the filter (and resulting image texture) are

separable is considered. For the two pole separable case

considered here, the filter transfer function can be

factored into expressions in z, alone and z2 alone. The

expressions in z, and z2 each have one pole on the real axis

in their respective Z domains. Figure 2-6 illustrates the

filter structure, the corresponding difference equation, and

its Z transform.

. . . .. . . . -. . .. .. - . 0 L. $.. ... .... ..- .



a10  a01 - 0.35 a10  a01 - 0.35

al1 - 0.5 
al1l 0.8

Figure 2-5 Images Generated Using Arbitrarily
Selected Filter Coefficients



h(n.u)

alo y(n,m) - a. y-y(n-i,m-j) + w(n,m)

i=o j-0 I
n(zl) (i, )D30(0,0)

(a 1 1  " a'-)

1 1
Y(zl'Z2) = H(zlz'2 )'W(zl'z 2) - -1 -1 W(zl'z2)l+aOzl l+aoZ 2

10 1 01 2

1-1 -1 W(zZZ 2)
l+a zl +a z l+a *a z z10 1 01 2 10, 01 1 2

Figure 2-6 Autoregressive Filter Form, Difference
Equation, and Z Transform

Here it is relatively easy to relate stability of the

filter to the location of the poles in the z, and z2 planes.

Since the quarter plane filter is separable and the

components are causal, one-dimensional filter stability

theory can be used to state that the poles in each plane

must have magnitude less than 1 to ensure filter stability.

Figures 2-7 through 2-9 show images resulting from this

model for various values of al0 and a01 . Note that thfL51c,

convention used for the filter difference eauation and -_

transform results in poles on the negative side of _tg reoI

axis for ositive values Q"10_ "01.Afl 4 y0&_-Y vytI.

19
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a1 0  a0  - .95a 10  a0 1  0.8

alo a, op
alo ai 0.2

Ovp

a1 0  a01  0.5 a 10  a01  - 0.25

Figu e 2 7 Im ges Gen rate Us ng a Two Pol

AutoegresiveMode

A.



ao 0 .5 a = 0.5 a 10  0.95 a 01  0.75

211



al0  -0-95 a01  0.75 a10  0.95 a01  -0.95

a10 - 0.25 a01  -0.25

Figure 2-9 Images Generated Using a Two-Pole
Autoregressive Model i
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Careful comparison of the images resulting from various com-

binations of alo and a01  leads to the following

observations:

1) When poles are located in the same place in the z, and
z2 planes on the negative side of the real axis,
magnitudes near 1 yield a fine graininess with patchy
areas and low overall contrast. As the magnitude of
the pole decreases, the graininess becomes more coarse
and the result is more like the original white noise
input. No directional quality in the image pattern is
observed.

2) When poles are located in the same place on the posi-
tive side of the z, and z2 real axes, a somewhat dif-
ferent result is observed. For magnitudes near 1, an
image of patchy light and dark areas results, with
differing amounts of correlation between pixels in
different areas. Slightly discernible "lines" in both
the horizontal and vertical directions are also
observed. For lower pole magnitudes on the positive
side of the real axis, the decreased effect of the
filter on the white noise input is again observed.
This result is more like the white noise and has more
contrast than the corresponding result using poles on
the negative side of the real axis.

3) For pole placements in the z1 and z2 planes which are
on the negative side of the real axis and are of
unequal magnitude, the results have a very fine
graininess and low contrast. Some slight direction-
ality is observable in the image patterns, with lower
frequency variations evident in the direction corres-
ponding to the pole with smaller magnitude.

4) For pole placements in the zI and z2 planes which are
on the positive side of the real axis and are of
unequal magnitude, much more directionality and varia-
tion is observable in the image pattern.

5) As the poles are placed on opposite sides of the real
axis and are separated by a greater distance, direc-
tionality becomes more evident (with higher frequency
variations in the direction of the more negative
pole). As the pole separation becomes greater and as V
the pole magnitudes become closer to 1, smoother sinu-
soidal variations are evident.

.J
6) When the pole magnitudes are equal and have opposite

sign, the image generated using pole magnitudes close

23
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to 1 exhibits high frequency sinusoidal variations in
the direction of the negative pole. The image gener-
ated with the lower magnitude poles, as would be
expected from the above results, resembled the
unfiltered white noise.

In order to explain these image patterns analytically,

analysis of the power spectrum and autocorrelation function

of this process is useful. Since this model is separable,

the analysis can be conducted in each direction separately.

The power spectrum is defined by [Ref. 4:pp. 24-34]:

Sy(w) = a 2 1H(ej)1 2 = a 2 H(eJuH(e-Jw) (2.3a)

where

H(eJw) = H(z) 1z=U (2.3b)

and for this case

1
H(z) = - i (2.3c)

1+z

Here a2 is the magnitude of the white noise power spectrum.

We can assume that a2 = 1 with no loss of generality of the

results, since a2 does not affect the shape of the frequency

response.

The autocorrelation function is related to the filter

transfer function through the equations [Ref. 5:pp. 391-

3953:

24
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h(n) = Z-I[H(z)] (2.4a)

y(n) = h(n) *w(n) (2.4b)

Ry(Z) = G2  h(n)-h(n-£) (2.4c)

Specific forms of the power spectrum and autocorrelation

function are given in Appendix B. Since Ry(Z) = Ry(-Z)

[Ref. 5:p. 388], calculating the expression for Ry(£), P < 0

is not necessary. From Appendix B, the results are:

Sy() = (2.5)
1 +2 aos(w) +a2

= (-) z > 0 (2.6)Ry (Z) - 2
-c

Appendix C shows the results of these equations

graphically for various values of a. The relationship be-

tween the power spectra and their corresponding autocorrela-

tion functions conforms to the expected results from theory

(i.e., low frequency spectrum with smooth autocorrelation

function, and high frequency power spectrum with rapidly

varying autocorrelation function) [Ref. 6:pp. 139-142). The

plots in Appendix C also demonstrate that: 1) For poles on

the positive side of the real axis in the Z plane low fre-

quencies predominate and for poles on the negative side of

the real axis high frequencies predominate, and 2) Lower

25
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magnitudes of a result in a broader power spectrum and a

wider range of frequencies of significant magnitude. Both

of these observations agree with the image results. For

images generated using a more negative pole in a given

direction, fine, high frequency graininess is observed in

that direction (though the low contrast or low variation

about the mean intensity may tend to make this effect less

noticeable). When a more positive pole is used, lower fre-

quency variations are more evident in the corresponding

direction. As lower magnitudes are used for a in a given

direction, more random variations (indicative of a wider

range of significant frequency components) are observed in

that direction. The form of the autocorrelation function

for these cases approaches the autocorrelation function for

white noise, i.e., an impulse. Negative poles should yield

high frequencies since the negative side of the real axis in

the Z plane represents a digital spatial frequency of T,

while positive poles in the Z plane correspond to a digital

spatial frequency of zero. Note that even when the poles

are placed such that a spatial frequency of zero should pre-

dominate, there are some low frequency random variations in

the resulting images. Since the power spectra of the posi-

tive poles all contain some non-zero frequency components

(they are not perfect impulses at zero), this characteristic

is expected.

26
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C. FOUR POLE, SEPARABLE AUTOREGRESSIVE MODEL
4'

For the cases considered in this section, H(z) again can

be factored into expressions in z1 and z2. However here 4'

each factor is a 2nd degree polynomial with two poles in the

denominator. Figure 2-10 illustrates the filter structure,

the applicable difference equation, and the corresponding Z

transform.

'-

h(n,m) Z

n(z 2 ) a 0 2  a 1 2  a 2 2  2 2 4.

a 01  all a 2 l y(n,m) = - a..-y(n-i,rm-j) +w(n,m)
i=0 j=0 '

1 alo a20 (j)(01 0)

n(z 1 )

1 1
=(l~ .~i~ .WZlW(Zl,2 '.

Y(ZlZ 2) = H(ZlZ 2 )"W(ZZ 2) 1+alZ+a zl2  1+a z2 1+a z2 2  
1 z2

10 1 20 1 01 2 02 2
Jd.

.

- -2 -1+ -2 - -i -2 -i -i -2 -2 -2 "W l'2'
-l+al 0z1 +a 2

I +,01z1l+a -'+ :1 az~ 2 ~ 1 az'~+ ~2- z 1 2
201 02z2 llZl z2 +21zl z2 +a12z z2 +a22 z2 .-.

where

a11 = a10 -a01 ; a21 = al0*a02; a12 =a 02 -al0 ; a22 =a 20-a02

Figure 2-10 Autoregressive Filter Form, Difference ,
Equation, and Z Transform '1
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Since all of the aij coefficients are real, the poles

must 1) both be on the real axis, or 2) occur in complex

conjugate pairs in the z, and z2 planes. Again, pole magni-

tudes must be less than 1 to ensure filter stability. We

will assume here that the poles in each of the factors have

equal magnitudes and opposite (or 0 or ±7) phase. Letting

a 1 = magnitude of poles in the zI plane

el = pole angle (phase) in the zI plane

a 2 
= magnitude of poles in the z2 plane

e2 = pole angle (phase) in the z2 plane

and using Euler's relation, the denominators of H(zl) and

H(z2) can be expressed as follows:

1aZ 1 +a z- 2 =-a e 1 ) ( 1l j -2a Cos -1+a2 z-

l+a11Z1  201 1  e z I )(1-a 1e 1  1) s(el)z I 1+1

=1 
2  i-a -1 2 -2

+a01z 2+a 02 z2 2 e ( z2 ) (1-a 2e z2 1) = 1-2a2 cos(e 2 )z 2 +t2z2

Hence:

alO = -2ai'cos(e 1 ) a 0 1 = -2a 2 "cOs(e 2 )
2 2

a 2 0 = al a 0 2 = a2

This gives a relationship between the pole magnitude and

angle in the Z domain and the filter coefficients in the

spatial domain.
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1. Complex Conjugate Poles

Figures 2-11 through 2-13 illustrate images

generated using this model for various complex conjugate

pole combinations in the zI and z2 directions. In comparing

each of these image textures in terms of the relative effect

of pole positioning in each direction, the following obser-

vations can be made:

1) For images generated using poles of equal magnitude
and angle in both directions, graininess with no
directionality to the pattern resulted. Higher pole
angles yielded finer (higher frequency) graininess and
less contrast. Lower magnitude poles yielded a more
random and less structured graininess pattern at the
same pole angle.

2) Using a pole angle of zero (pole on positive real
axis) in one direction and a pole of some non-zero
angle in the other direction yielded images with
highly directional sinusoidal patterns. The direction
corresponding to the pole on the real axis was not
totally devoid of variation, but variations were slow,
i.e., of very low frequency. The spatial frequency of
the sinusoidal pattern can be increased by increasing
the pole angle. Large magnitude, high pole angle
combinations yielded much cleaner and more structured
textures than low magnitude, low pole angle combina-
tions. Lower magnitude, high pole angle combinations
yielded less structured textures where directionality
was evident but the sinusoidal pattern was obscured.
Low magnitude, low pole angle combinations yielded
very random, non-structured textures of relatively
high contrast.

3) Using poles in the zI and z2 planes with the same
magnitude but different pole angles resulted in some
directionality if there was a sufficiently large
magnitude and difference in the pole angles. As
observed earlier, the direction with the higher pole
angle had the higher spatial frequency. Large pole
magnitudes (close to 1) resulted in more structured
but rather low-contrast images (the low contrast
seemed to obscure the high frequency nature of the
pattern somewhat). Pole angles in zI and z2 that were
of close value made it difficult to detect the higher
frequency (higher pole angle) direction. Low
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Figure 2-11 Images Generated Using a Four Pole
Autoregressive Model (Poles Listed
Below Image)
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2  0. 9e 6

Z1~z 00e.6e-1
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z2 0.99e

Figure 2-12 Images Generated Using a Four Pole
Autoregressive Model (Poles Listed
Below Imagel
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magnitudes basically negated the pole angle effects
and yielded a very random, unstructured, high contrast
texture.

4) Where pole magnitudes were close and pole angles were
different in the zI and z2 planes, some directionality
in the texture was observed. Again, the high pole
angle direction yielded the highest frequency. When
the pole angles in both Z domains had similar values
and the magnitudes of the poles differed, graininess
with little or no discernible directionality or
structure resulted.

These observations are consistent with classical

pole-zero frequency response analysis [Ref. 7:pp. 323-331].

There is a direct relationship between pole angle and

spatial frequency in a given direction, and the magnitude of

the poles affects the amount of structure and definition of

the sinusoidal pattern of a given frequency in a given

direction. Higher magnitude poles result in a narrower

bandwidth of the filter and yield more structure and

sinusoidal pattern definition. Low pole magnitudes give the

filter wider bandwidth and yield images with less structure

and definition and more randomness in a given direction.

While directional dependencies are evident given pole

magnitude and angle in a given direction, it does not appear

that a pattern in one direction is totally independent of a

pattern in the other direction. This would be expected,

even though the model is separable, due to the cross terms

in the filter structure.

Filter power spectrum and autocorrelation analysis

can be conducted in this case, as in the case of the two

pole model. The derivations for Sy(-) and Ry(;) are
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somewhat more involved, and are given in Appendix D. The

resulting expressions for Sy(w) and Ry( ) from Appendix D

are:

1
Sy(W) = + 4+2(( 2-2[1 3-L]oos()cos(w)+Q (cos(2e)+cos(2w))) (2.7)

_~Z 2 ,cos(ze) cos((2+Z)6)- cos(ZO)) (2 > 0) (2.8)
2s- 12 eI+o 4-2a 2cos(26)

The plots of these functions for the various pole

magnitudes and angles used are given in Appendix E. The

0 = 0 case is equivalent to having 2 poles on the real axis

at a given magnitude in the Z plane. As would be expected,

the power spectrum for each model showed higher magnitudes

at digital frequencies close to the pole angle. Higher pole

magnitudes yielded sharper, more well-defined power spectrum

magnitudes at the given frequency, and lower pole magnitudes

yielded less well defined more spread-out power spectra.

Low pole magnitudes almost completely obliterated evidence

of low frequency power spectrum components, and degraded its

definition and sharpness at higher frequencies. This

corresponds to the observed results in the image textures

generated. The autocorrelation functions also reflect the

appropriate relationship to the power spectra as outlined in

the discussion for the two pole case, i.e., greater
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variation in the autocorrelation function indicates greater

variation between pixels a given distance apart, which in

turn implies higher spatial frequencies.

2. Two Real Poles

Rather than using complex conjugate pole locations

to obtain real filter coefficient values, two poles on the 'p
real axis may also be used for a given direction. They may

be placed at different locations on the real axis, or they

may be placed together. The latter situation is equivalent

to the 9 = 0 (or = ±7 if placed on the negative real axis)

case, as mentioned above. For the two real pole case, the

relevant equations are:

1 1 4
H(z) -2(l-'Aa z - l  (l-"bz - ) i ( aa +(b ) z-l+OaOb z -

1

l+a z +a z01 02

where

a01  = -(a + 1b)

a0 2 = a a.b

For these experiments a transfer function of the

complex conjugate pole form was used for the zI direction,

with i = 0.9 and 1 = 0. For the z2 direction a transfer

function with two poles on the real axis was used. The
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image textures that result for various values of a a and Ltb

are given in Figures 2-14 and 2-15. Some observations can

be made about these results:

1) With poles placed at the same value on the z2 real
axis, rather unstructured, low frequency variations
are observed in the z2 direction. The more positive
poles result in very slow variation in the image
texture, while the lower magnitude positive poles show
more variation in the z2 direction. When the poles
are placed in the same location on the negative side
of the real axis, a low contrast image with some
noticeable high frequency variations results.

2) As the poles are moved farther apart on the z2 real
axis, high frequency variations with increasing struc-
ture and oscillatory form are evidenced in the z2
direction.

3) When poles with equal magnitude and opposite sign are
used, fairly structured high frequency variations are
evidenced in certain areas of the image, while low
frequency variations are evident in other areas in the
z2 direction. Higher magnitude poles yield more
discernible, structured variations, while lower
magnitude poles of opposite sign yield discernible but
non-oscillatory high frequency variations in certain
areas of the image.

Of particular interest is the fact that two poles

placed at the same value on the negative real axis in the z2

plane yielded some high frequency variations. This is in

keeping with the fact that values on the negative real axis

correspond to a pole angle (and corresponding digital

frequency) of = iT. The presence of poles on the negative

side of the real axis of the z2 P .ne seems to give rise to

the high frequency variations with gradually more structure

and oscillatory appearance as the pole is moved to the left

(more negative).
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* . Figure 2-14 Images Generazed Using a Four Pole
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cxa =0.8 (b -0.9 ata 0.9 a = -0.9

C= 0.5 lb =-0.5

Figure 2-15 Images Generated Using a Four Pole
(Two Real Poles) Autoregressive Model
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The expressions for the power spectrum and autocor-

relation function for the random process produced by driving

the filter of Figure 2-10 with white noise are derived in

Appendix F. It is shown there that the power spectral

density and the autocorrelation function are given by:

Sy(W) 2 2 1 2
1-2 (aa+ b+ aab) cos (w) +2 a c4bODS (2w) +aa% a a

+ 2a 2 2 2 (2.9)

2+Z Z+I k+i 2+Z
= 1 a _ a %+Oa(b

RY(k 2)ab +1-2 (2.10)

Plots of these functions for the various values used

in this section are given in Appendix G. The power spectrum

results are consistent with the observed image spatial fre-

quency characteristics. Both low and high frequency

components were contained in some of the power spectra, and

were manifested in the corresponding images as both low and

high frequency variations in the z2 direction. The nature

of the autocorrelation functions related to the power

spectra that contained low and high frequency components was

interesting. Autocorrelation functions with much variation

but all positive values, rather than the equal magnitude

39



positive and negative values evidenced in earlier results,

seems to reflect the higher level of correlation related to

the low frequency (smoother variations) aspect of the image

texture variations.

D. IMAGE TEXTURE ROTATION TRANSFORMATION

If an image signal x(nl,n 2 ) consists of a rotated

version of another image w(ml,m 2 ) such that nI = ImI + Jm 2

and n2 = Km1 + Lm 2 , where I, J, K, and L are integers and

IL-KJ # 0, then the Z transform X(zl,z2 ) is given by

I K J LW(zz 2 ,zl,z2 ) [Ref. 3:p. 182]. A 450 rotation corresponds

to I = 1, K = 1, J = 1, L = -1. If we use the four pole

separable result for H(zl,z 2 ), as shown in Figure 2-10, and

apply the above transformation (zI -, z1z l  1 -1 we1 2,z2 - ZlZ 2 ),w

find after simplification:

1HR(ZlZ 2 ) = -l -l -2 2 -i -i -2 -3 -iHRz±2 +a z- z_ +a z2 z 2+a z- z i+a a z 2+a a z -3z-
01 1 2  02 1 2 10 1 2  10 01 1  10 02z1 2

+a z - 2 -2 z-3 - (2.11)
201 2 A0a011 2 20a02z1

Notice that this transfer function is not separable but

consists of a rotated version of a separable filter. Figure

2-16 illustrates the support of the denominator polynomial

for this filter. It has the form of a non-symmetric half-

plane infinite impulse response (IIR) filter, so it is

recursively computable.
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0 0 a2 0  0

0 a2 0 a0 1  0 al0

a20a02 0 al0 a0 1  0 1

0 al0 a0 2  0 a01  0

o 0 a0 2  0 0

Figure 2-16 Rotation Transformation Filter Form

The application of this filter, using filter coefficients of
±j 7T

the four pole separable filter with poles at zI - 0.9e

Z2 - 0.9e ±30  in the original separable filter yielded the

result shown in Figure 2-17.

Figure 2-17 Result of Rotation Transformation

E. SUMMARY

Autoregressive models can produce a variety of image

textures. For general two-dimensional models, the system

functions are generally not factorable and singularities
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occur on surfaces, not at isolated points. For these

reasons it is difficult to design two-dimensional filters

for images and predict the resulting character of the

images. Indeed, even to ensure stability of the filter is

not trivial. As a result we concentrated here on separable

forms, which by their nature are much easier to analyze.

Certain types of texture patterns using various separable

autoregressive models can be predicted based on filter pole

placement in the zI and z2 planes. Arbitrary or random

selection of filter coefficients can yield interesting but

generally unpredictable results. Obviously, an infinite

number of variations on the models above could be attempted.

Ultimately, the anticipated utility of the textures

generated will guide the process of model and parameter

selection.
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III. IMPLEMENTATION OF AN FIR SUMMATION FILTER
IN TWO DIMENSIONS

To implement the 2-D ARIMA model, the inverse of a

filter representing a suitable difference operator is

needed. One possible 2-D difference operator is the

Laplacian, which has the impulse response shown in Figure 3-

1 [Ref. 8:pp. 212-213].

m h(n,m)

0 -i 0

-1 1-i n

0 -1 0

Figure 3-1 Laplacian Impulse Response

Its implementation involves convolving it with an image

and is represented by the following difference equation:

1 1
y(n,m) = j 1 bijx(n-i,m-j) (3.1)

where

x(n,m) is the image input signal, and

bij is the filter coefficient matrix
(bij = h(i,j))
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In the Z-transform domain this can be written as:

Y(zl,z2 ) = H(Zl,z2)-X(zl,z 2 )

= (4 - z- 1 - zI - z- 1 - z2 )'X(zIz 2 )

In areas of an image where adjacent pixels have similar gray

levels (low frequency, homogeneous areas), the result of

this operator will be approximately zero. Where significant

or sharp differences in gray levels between adjacent pixels

exist, the result of this operation will be farther from

zero. Thus the Laplacian difference operator is sometimes

used as an "edge detector."

The problem addressed in this chapter is constructing

the inverse of the operator. In the Z domain, the

expression for the inverse would be [Ref. 4:p. 36]:

_ 1 = 1
H(z l z 2 ) 4Z l1 -z -z -z

1 1l 2

which has an expansion as an infinite series of positive and

negative powers of z1 and z2 . That is, considering this

expression as a problem in long division, the result of such

division would be an expression of the form:

H-l(zl, z2) I .I a zij z-j
i=- ODj=-ODi

where
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aij coefficient values of z -J resulting from the
long division

Note that if

= -- a. z -z2

4 - z - I - z - z2  =-

then cross multiplication would yield:

(4 - z- 1 zZ 2) / Z aijz -'z = 1 (3.3).. .. . z,=Ji=(3.3)

The double summation expression in zI and z2 will be

truncated and considered to be an FIR filter with finite

support and coefficients aij. This approximates the desired

inverse filter. In particular, we will use the following

constraints:

1) Choose the limits of summation to be equal in both
directions, i.e.,

L L

i=-L j=-L ij 1 2

This results in a "square" region of support for the
filter (all values outside assumed zero).

2) Force the values for the filter coefficients to be
symmetric, i.e., aij = a-ij = ai-j = a.i-j = aji
= a-ji = aj- i = a-j- i .

Using these constraints and implementing the cross

multiplication equation (3.3) will result in an expression

in z, and z2 , with each combination of the z)z terms having
1 2

a coefficient whose form is a summation of terms in aij
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where the coefficients of aij are either 4 or -1. The

coefficient of the z~zO term must equal 1 and the coeffi-

cient of any other ziz J term must equal zero to satisfy

equation (3.3).

As an example, let L = 1. Equation (3.3) can then be

expressed as:

1 1

(4 - z- 1 - Z1 - Zl -1 7 aijzjiz-i
i= l j=-l

I + O-zk + O'z2 + O'zlz 2 +

Performing the double summation yields

aiz j = a-l-jz 1z1 + a-10 + a-llzZ- 1Z +

aij 1 2 -1 2 a..10zl Z2  112i=-I j=-i

+ ao0 zOz a 0.izz a1..1zC-lZllzl + al0z00-
12 12

+ a01 z21 + allzlz2l

Performing the cross multiplication would yield 45 different

terms in various combinations of Zl -zlj. Combining these

terms to find the coefficient expression for each z1iz2J

term soon becomes rather tedious and impractical for even

moderate values of L. An alternative way to proceed is to

choose a zazb term on the right hand side of the equation,
1 2

and for each term in the expression 4-z l-zl-z2 1- z2 , deter-

mine what values of i and j are required so that when

each term is multiplied by aijzlizJ, it will result in an
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expression in the chosen zaz b term on the right hand side of

the equation. Choosing z z0 (= 1) on the right hand side of
1 2

the equation, we have:

4*ai iz2J = 102 when i 0 and j 0; so c = 4a00

-Z-"aijz-z) = czz when -1 and j 0; so c -a... 10
1 1J 2 1 2

-zlaijz-iz-J = cz0 z0 when i = 1 and j = 0; so c =-a 11 2 1 2

-z'~aijz-z3 = Cz0 z0 when i = 0 and j =-1; so c =

2 1J 2 12
-z-aijzliz j = cz~z0 when i = 0 and j = 1; so c = -a 0z 2 1 2 1 2

So the coefficient for z0 z0 is simply a summation of the c
1 2

terms obtained above, i.e.,

(4a00 - 4.lo - al0 - a0. 1 - a 0 1 )z 1 z 0

This entire expression must equal 1 to satisfy (3.3), and

since z0 0 = 1, 4a 00 - a- 10 - al0 - a0 -1 - a01 = 1 also.
1 2

Using the same method for the zlz I term on the right
1 2

hand side yields:

4-aijz-izJ = czlz I when i =- and j =-I; so c = 4a- 1

1J 2 1 2

-z-l.aijz-iz-J = czlz I when i = -2 and j = -1; so c = -a-2 -1
1 1 2 12

-zl-aijz-iz-J = czlz I when i = 0 and j =-I; so c = -a0 _1
11 2 1 2

-z-iaij i- = czlzl when i = -1 and j = -2; so c =-a-. 1 -.22 1 2 12

-z2 .aijzl1z) = cz1zl when i = -1 and j = 0; so c = -a- 1 0
1 2 1 2
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The resulting term in z~zl is:

(4a-l-i - a-2- 1  - a 0 _1  - a- 1 - 2  - a- 1 0 ) z z

This expression must equal zero, since there is no z1 z1 term

on the right side of (3.3), so 4a_l_1 - a- 2 -1 - a0 _ 1 - a- 1 -2

- a- 1 0  = 0.

This procedure can be extended to any number of ziz-)

terms. When this is done, the resulting expressions for the

coefficients of z-iz)J can be formed into a set of simultan-

eous equations in order to solve for the aij coefficient

values. However, due to the symmetry condition imposed

above, some of the equations for the coefficients of the

z-1l1z2J terms are linearly dependent. For values of i and j

that yield unique or distinct values for aij , the resulting

Z-iZ- j coefficient expressions are linearly independent.
1 2

For example, the coefficient expression for the z zllZ term
12

is linearly independent of the coefficient expression for

the z-l zQ term, since al0 * all. But the coefficient ex-
1 2

pression for the zlz 0 term is linearly dependent on the
1 2

coefficient expression for the z0z -1 term, since al0 = a01 .
12

Using only the linearly independent equations for a given

filter size yields a set of p equations in p unknowns, where

p is the number of unique and distinct aij values in the in-

verse filter. The value of p is related to the size of the

desired inverse filter. If the size of the filter is N N,

Z



the number of unique aij values using the symmetry of

constraint above is:

1- I +) + ( ) + - + I (3.4a)2i

(N+I) (N+ 3) (3.4b)
4

For example, with N = 7, the unique aij values in a 7 • 7

inverse filter can be represented by a3 3 , a3 2 , a31 , a30,

a2 2 , a21 , a2 0 , all, al0 , a0 0. Though there are 49 elements

in a 7 - 7 filter, all of them are equal to one of these

values listed, due to symmetry. Obviously, N is constrained

to be odd for a square filter with a unique element a0 0 in

the center.

Tne solution of the resulting p equations yields the

values for the p filter elements or coefficients. This

defines the FIR approximation to the inverse filter. It is

only an approximation due to the finite size constraint

imposed, and it might be expected that the larger the filter

size, the better the approximation.

An algorithmic procedure for obtaining the aij

coefficients is outlined below. An example follows.

1) Determine the desired size of the inverse filter.

2) For each combination of (positive) ij values corres-
ponding to a unique aij filter coefficient, identify
thQ five term summation equation associated with each
z 'z- ] term.
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3) Combine equal aqi values and develop a matrix of
coefficients for he aij values. Let this matrix be
A.

4) Denoting the vector of unique aij values as a, the set
of simultaneous equations in matrix form is:

Aa-  0 (3.5)

where

a = [a00  al0 all a2 0 a21 a2 2 ... aN-i N-1

2 2

The top row of K corresponds to the summation of aij
terms that represents the coefficient of the zy z9
term.

5) Solve (3.5) for a.

An example of this procedure is appropriate at this

point. For an inverse filter of size Nx N:

Step 1

Let N = 5 (therefore L = 2)

Step 2

The coefficients corresponding to each unique z-iz-J

term are:

zOzO - 4a 0 0 - al0 - a- 1 0 - a0 1 - a0 ..1 2

Z-llZ - 4a 10 - a2 0 - a0 0 - all - a,-,
1 2

Z-1ll- 4all - a21 - a 0 1 - a12 _ al0
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ZI2Z O  - 4a 20 - a30 - a_ - a21 - a2 -112 a2-

z12z- 2 - 4a 21 - a31 - all - a2 0 - a2 -2

z12 z2 2  - 4a 2 2 - a32 - a1 2 - a2 3 - a21

Step 3

Combining equal terms in Step 2 and expressing the

coefficients of aij in matrix form yields an A matrix of:

4 -4 0 0 0 0

-1 4 -2 -1 0 0

0 -2 4 0 -2 0

0 -1 0 4 -2 0

0 0 -1 -1 4 -1

0 0 0 0 -2 4

Step 4

With A given in Step 3, the a vector for (3.5) is

a = (a00  al0  all a2 0  a2 1  a22 ]

Step 5

Solving (3.5) for a involves inverting A and multiplying

it by (1 0 0 0 0 0 3
T . Thus:

a A-1 -( 0 0 0 0 0]T
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Appendix H illustrates the forms of the resulting

inverse filters of various sizes, as well as the normalized

and unnormalized filter cross sections.

One way to validate the resulting inverse filter is to

convolve it with the original Laplacian difference operator.

The result should approximate an impulse at the origin.

Appendix I shows the results of this convolution using 3 x3,

5 x 5, 7 x 7, 9 x 9, 15 x 15, and 21 x 21 size inverse filters.

It is seen there that as the size of the filter gets larger,

it becomes a better approximation to the true inverse and

the convolution looks more like an impulse.

To test the application of this filter on an actual

image, a test image was filtered using the Laplacian

difference operator. Then the resulting image data were

filtered again using various size inverse filters. The

results are shown in Figures 3-2 and 3-3. Note that the

image resulting from Laplacian FIR filtering seems more

stationary than the test image, which was one of the desired

results. Inverse filtering of that result yields images

that are progressively more similar to the original test

image as the size of the inverse filter increases. However,

a rather large inverse filter is needed to accurately

reproduce the image. The result of the 21 x 21 inverse

filter is quite similar to the test image, with some loss of

contrast or darkness in certain areas, but with essentially

the same pattern. The effect of the size limitation of the
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Test image Laplacian filtered test
image

3 x 3 inverse filter 5 5 inverse filter

Figure 3-2 Results of Filtering Test Image with
Laplacian FIR Filter and its Inverse
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7 x 7 inverse filter 9 x 9 inverse filter

15 x 15 inverse filter 21 x 21 inverse filter

Figure 3-3 Results of Filtering Test Image with
Laplacian FIR Filter and its Inverse
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inverse filter, as manifested in the convolution of the

Laplacian and its inverse above, would seem to explain the

lack of perfect test image reproduction. Larger inverse

filter sizes could be tried, but large inverse filter sizes

relative to image size would result in a significant portion

around the edge of the image having only a part of the

filter applied to it. This would adversely affect the

overall quality of image reproduction.

I

55

I

! ~~ A. . I 4 .-- . q.- . .v .. . .A ., - 4.-.° .A A. .1' 4 -- . . 1 --



IV. APPLICATION OF THE ARIMA MODEL TO IMAGE TEXTURES

As outlined in Chapter I, the utility of the ARIMA model

centers around the fact that a difference operator applied

to an image texture may improve the stationarity of the

image statistical characteristics. A stationary image

texture is required for accurate modeling by autoregressive

techniques, and it was hoped that application of the

autoregressively generated texture to an approximate inverse

of the difference operator may yield a more accurate or

recognizable representation of the original nonstationary

image, as compared to a purely autoregressively generated

version.

A. APPLICATION OF LAPLACIAN INVERSE FILTER TO AUTO-

REGRESSIVELY GENERATED IMAGES

As an initial examination of the effects of the inverse

filter developed in Chapter III on image textures, selected

images generated in Chapter II were input to the 21 X 21

version of that filter. Figures 4-1 through 4-3 illustrate

the results. All attempts resulted in a blurred or smoothed

version of the original image. Since the inverse of a

difference operation is a summation or "integration"

operation, and since integration operations can be expected

to smooth or blur (low pass filter) signals (Ref. 8:pp. 136-

154], the results are not surprising. However,
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except to the extent that blurring is useful or desirable,

applying the summation filter to image signals that are not

based on the application of the corresponding difference

filter to that signal seems to be of little utility.

In the remainder of this chapter we consider applica-

tion of the summation filter to regenerate actual image

textures.

B. AUTOREGRESSIVE FILTER PARAMETER ESTIMATION PROCEDURES

The first step in testing the ARIMA model is to estimate

the autoregressive, quarter plane filter parameters required

to model the real image textures and the signal resulting

from application of the Laplacian operator to those images.

For a zero-mean signal, these model parameters are found by

solving a set of Normal equations. In these equations the

white noise covariance is referred to as the prediction

error covariance. The Normal equations can be expressed as

a0  s

a, 0R 0 (4.1)

ap_ 1  0

where the R matrix is the correlation matrix for the signal

(block Toeplitz with Toeplitz blocks), the a vector consists

of appropriately ordered filter coefficient vectors, and s

is a vector containing the prediction error covariance as
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the first and only nonzero element. Here ai = [aio ail

ai2 . . . a i Q_l]
T and-9= [9 2 0 0 . . 0] T .

Calculating the correlation matrix and prediction error

covariance from the image signals, and solving (4.1) for the

-&-vectors, provides all the parameters needed for the 2-D AR

model. The multichannel form of the Levinson recursion can

be used to solve these equations more efficiently [Ref. 2:p.

454].

C. APPLICATION TO REAL IMAGE TEXTURES

Actual image textures used here are from the image data

base at the University of Southern California's Signal and

Image Processing Institute [Ref. 9:pp. 13-14]. The images

selected from this data base are contained in a book by

Brodatz (Ref. 10]. Portions of the images of size 128 x 128

pixels were obtained and used as a basis for processing.

Filter coefficients were calculated for the real image

textures shown in Figures 4-4 and 4-5. Various filter sizes

were tried to determine which yielded the best results in

generating a particular image, and a quarter-plane filter

size of 4 x4 was selected. Results of autoregressive

filtering of white noise using the appropriate calculated

coefficients to model each texture are given in Figures 4-6

and 4-7. Images generated by applying the Laplacian differ-

ence operator to the real images are shown in Figures 4-8

and 4-9. Autoregressive generation of these images using
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Figure 4-6 Image Textures Generated Using an AR Model
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Figure 4-8 Actual Images After Laplacian Filtering
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filters with the corresponding calculated coefficients are

given in Figures 4-10 and 4-11. Finally, the application of

the signal represented by the images in Figures 4-10 and 4-

11 (without the 0-255 scaling reflected in these figures) to

the 21x 21 inverse filter described in Chapter III yields

the images shown in Figures 4-12 and 4-13. Comparison of

all of the above results yields the following observations:

1) Autoregressive modeling of the water, grass and sand
textures yielded good results. Some of the other tex-
tures with more structure and sharp local variations
were not reproduced well.

2) Autoregressive reproduction of images created after
application of the difference operator, with the
exception of the water image, yielded generally poor
results. As observed in Chapter III, the application
of the difference operator produces a seemingly more
stationary result, but the edge structure that remain-

ed in most of the images after application of the dif-
ference operator was in general not reproducible using
a purely AR model.

3) Application of the inverse filter to the image signal
generated by AR model reproduction of the difference
operator results yielded smoothed versions of those
results. This is similar to what was observed in Sec-
tion A of this chapter when images were applied to the
inverse filter that were not based on the specific
data generated by the difference operator.

As a final test of the ARIMA model, a 64 x64 contrast

enhanced aerial photograph of trees, with smoother

variations and in general less edge structure than the other

images tested, was tried. The results are shown in Figure

4-14. Though this image seemed somewhat better adapted to

the model, overall the same observations outlined above

apply.
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Figure 4-11 Laplacian Filtered Image Textures
Generated Using an AR Model
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Figure 4-13 Image Textures Generated Using an
ARIMA Model
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Figure 4-14 Final Test of ARIMA Model on Contrast
Enhanced Trees (Magnification X2)
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D. SUMMARY

The effectiveness of AR reproduction of image data using

white noise input and filter coefficients calculated based

on the statistics of the image signal is highly dependent on

the nature of the image data. The water image, for example,

with its smoothly varying and rather homogeneous nature, was

quite well adapted to AR reproduction. Other images with

more structure, abrupt variations, and more non-homogeneous

characteristics, were not autoregressively reproducible to

any great extent.

Using the ARIMA model, it seems that the operation of

the inverse filter is very sensitive to the nature of the

input data. Input data that are strictly based on the

difference operator output can reproduce the original image,

as was found in Chapter III. However, the AR model used to

generate the inverse filter input (based on the statistics

of image signal produced using the difference operator) does

not generate image data accurately enough to reproduce

images that resemble the real images tested.

. . . .. . .



V. CONCLUSIONS

This thesis sought to explore experimentally and to

understand how linear filtering models could be used to

generate texture in images. Of particular interest was the

investigation of 2-D ARIMA models to see if they might be of

any utility in this effort. Some time was spent exploring

separable 2-D models to understand how transfer function

pole placement affected image texture characteristics.

Image textures generated using these models and applied to

the summation filter yielded blurred or smooth textures with

seemingly little variety or utility. The ultimate test of

the model was its ability to reproduce actual image

textures. The purely AR portion of the model reproduced a

few types of actual textures well. However, the full ARIMA

model failed to generate image textures that resembled the

source images used. Many of the textures had strong edge

differences that were not accurately reproducible by the AR

model. Also, the summation filter developed seemed very

sensitive to deviations in image signal data from that

generated by application of the difference operator; that

is, the procedure seemed not to be "robust."

Since many of the images tested here have definite edge

structure, the difference image had lines which were not

reproduced well by the AR model. Correspondingly the

.I



integrated AR model did not reproduce the original image.

For this type of image, a combination of a line point

process model [Ref. 11] with the integrator, would possibly

have been more suitable. The image of trees had not such

edge structure and produced somewhat better results.

Further experimentation with images of this type and the

ARIMA model would perhaps be appropriate.
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APPENDIX A

COMPUTER PROGRAMS, SUBROUTINES. AND FUNCTIONS

Listed below are the names, associated computer systems,

and functions of the various computer algorithms used to

accomplish this thesis research. All programs were written

by the thesis author unless otherwise noted. Program source

codes are given at the end of this appendix (except for the

MAKFIL* series).

A. PROGRAMS

1. AUTOREG (VAX/VMS FORTRAN)

The program did the following:

1) Generated a 128 - 128 zero mean whito nwsr, mitri>:
using subroutine PGAUSS.

2) Multiplied the white noise by the appropriit, i.-i o'
data standard deviation when necessary.

3) Converted that matrix into a displayibl, imij- t-
using subroutines SCALE and INTBYTE, when ne'e;,rv.

4) Read filter parameters from an input !ile Int Ar
array.

5) Implemented the equation:

y(n,m) ' (n- ,m- ) n A.

using the white noi.-;e irray and the i t r or- t i :-,,,t
array as inputs;.

% %%%



6) Converted the array result from 4) into a displayable
image file using subroutines SCALE and INTBYTE.

7) Used subroutine SUBINTFILE to create image data files
from filter results for further processing.

8) Used subroutine NONC to apply the summation filter to

image data when necessary.

2. NONCAUSAL (VAX/VMS FORTRAN)

This program did the following:

1) Read filter coefficient values into an array.

2) Read image data from an input image file, converted it
to integer values using subroutine BYTEINT, calculated
the mean from the data, and placed the data into a
real array.

3) Implemented the equation:

y(n,m) = aijx(n-i, m-j) (A.2)

using the image data array and the filter coefficient
array.

4) Called the subroutine NONC to implement the equation
in Step 3) a second time, when necessary.

5) Converted the result of Step 3) to a displayable image

file using subroutine SCALE and INTBYTE.

3. CONV (VAX/VMX FORTRAN)

This program performs the same basic functions as

NONCAUSAL, without having the capability ot calling

subroutine NONC. It was used for convenience in convolving

certain filter structures with certain test imaqes directly.
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4. MAKFIL* (VAX/VMS FORTRAN)

This family of programs was used to create various

autoregressive and FIR filter coefficient files, using

source data manually entered into the program.

5. SPECOR2 (IBM SYSTEM/370 3033 VS FORTRAN 1.4.1)

This program implemented the equations derived in

Appendix B and created data files used in developing the

corresponding graphs.

6. SPECOR3 (IBM SYSTEM/370 3033 VS FORTRAN 1.4.1)

This program implemented the equations derived in

Appendix D and created data files used in developing the

corresponding graphs.

7. SPECOR3A (IBM SYSTEM/370 3033 VS FORTRAN 1.4.1)

This program implemented the equations derived in

Appendix F and created data files used in developing

corresponding graphs.

8. VARIMGS (VAX/VMS FORTRAN)

This program was used to display image data files on

the COMTAL (not written by author).

9. PIECE (VAX/VMS FORTRAN)

This program was used to make 128 128 image data

files from larger image data files.

10. INTFILE (VAX/VMS FORTRAN)

This program created appropriately formatted integer

files from input image data for further processing.
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11. TRANS (VAX/VMS FORTRAN)

This program changed the format of filter coeffi-

cient data files into a form readable by the image

processing programs.

12. NSHP (VAX/VMS FORTRAN)

This program was used to convert quarter-plane auto-

regressive filter coefficient data to non-symmetric half-

plane autoregressive filter coefficient data based on the

transformation outlined in Chapter II, Section D.

B. SUBROUTINES

1. PGAUSS (VAX/VMS FORTRAN)

This subroutine, written by C.W. Therrien, was used

to generate zero mean, unit variance white noise using RAN

(a random number generator function) SQRT, COS, and SIN

FORTRAN functions.

2. SCALE (VAX/VMS FORTRAN)

This subroutine takes an image data array and

converts it to an integer array with values between an input

maximum (MAX) and minimum (MIN) using the following scaling

formula:

I(i,j) - (A(i,j)-LOW) x (MAX-MIN) + MIN (A.3)
HIGH-LOW +IA

A(i,j) is the input image data array, I(i,j) is the output

integer array, and HIGH and LOW are the high and low values

of A(i,j), respectively (calculated in this subroutine).
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This is done to provide appropriate values for image files

that will be displayed on the COMTAL Vision One/20, since

the gray scale intensity level of each pixel is represented

by an 8-bit word. So values possible (in base 10) range

from 0 (darkest), to 255 (brightest).

3. INTBYTE AND BYTEINT (VAX/VMS FORTRAN)

These subroutines are necessary since data in an

image file are stored in two's complement form. The related

variable type in FORTRAN for these values is BYTE. To

process image data using FORTRAN implementation of the

appropriate formulas, these byte values must be converted to

integer (and eventually real using the FLOAT function) form.

Results of image processing formulas in real form must be

converted to integer (using the INT function) and then byte

form to be placed in image data files. INTBYTE converts

integer type variables to byte type variables using the

following criterion (I is an integer and B is a byte):

If I < 127 and I > 0 then B = I

If I > 127 and I < 255 then B = 1-256

BYTEINT converts byte type variables to integer type

variables using the following criterion:

If B > -128 and B < 0 then I = B+256

If B > 0 and B < 127 then I = B

4. SUBINTFILE (VAX/VMS FORTRAN)

This subroutine performed the same function as

INTFILE, but could be called by a program to operate on
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processed image data arrays, rather than just image file

data inputs.

5. NONC (VAX/VMX FORTRAN)

This subroutine performs essentially the same

functions as NONCAUSAL, except that it can be called by a

program to operate on an image data array.

C. APL FUNCTIONS

The APL systems on the IBM System/370 3033 and VAX/UNIX

were used for matrix manipulations and operations, for

graphing filter structures and convolution results, and for

calculating autoregressive filter coefficients from image

data. All APL functions except MAKMAT were written by C.W.

Therrien.

1. MAKMAT (IBM)

This function was used to create the large coeffi-

cient matrices (A) used in calculating the FIR filter

coefficients as outlined in Chapter III.

2. CC2 (IBM)

This function was used to circularly convolve the

Laplacian FIR filter and its various inverses. Appropriate

zero-padding of these filters makes the resulting circular

convolution equivalent to linear convolution (Ref. 2:pp. 70-

72], which was the desired operation.

3. GETDATA (VAX/UNIX)

This function is used to transfer image data files

r TNiX subdirectory to an APL workspace.
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4. PUTDATA (VAX/UNIX)

This function is used to transfer filter coefficient

data files from an APL workspace to a UNIX subdirectory.

5. MEAN (VAX/UNIX) "

This function is used to calculate the mean of an

image data file for use in the APL function COVF.

6. COVF (VAX/UNIX)

This function is used to calculate terms in the 2-D

covariance function for use in the APL function CORR.

7. CORR (VAX/UNIX)

This function is used to estimate the 2-D covariance

function of the image data.

8. MVLEV (VAX/UNIX)

This function is used in APL function FF2DLEV to

calculate necessary parameters for the 2-D Levinson

recursion from the covariance function of the image data.

9. FF2DLEV (VAX/UNIX)

This function performs the 2-D Levinson recursion to

solve for the filter coefficient vector.
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AUTOREG

c TI4S PQOD;RA4 GE.j!EQ&TrS Aji 146r,&7 TEI T jji.* 'VHrTE 'OI1SE AS A'd INPUT
C TO AMd AUf0QErRESSIvE F ILTE~ 4flSEns oA; ADOcTE;S ARE ObTA 1NFD F40w THE
C FILE FIL:OEF. SU1Ri)JtI',E P;A115 IS JSEi TU GENEQATE THE INPJT OwHITE
c 401SE AN.) SU14RP'uT1NEE1 SC4LT ANn T~RY~TE AFrE USED ri PREPARE IMAGE
C IATA AZRIYS FO:1 )ISPLAV . SJBfaOUTTNE SU9'INfr ILE 1S JSED IF 41

C I*dTEGE-? FILE R-S'JLT 1S DESIRED, AN') SURRIUT1N4E NONC IS USED IF A
C LAPLACIAN INvE4SE FILrERpN; STEP 15 NEEDED.
C
c OEFI'JE V4RTAtALES

byte a(3:I27),bifm(0: 177,0:I17)
inteQer f.seelorslzeocslzeoc,441om"I,i,i, ioI.10.,col,lnteq(O:127,0:1

c OPEN FILE'S

one-%( 3nfitle=' nameh(atn. atacibu.n.atye stattjsz'osdild'

C DEFIN~E PAR614ETERS
see: 23'A567

s i z e: 7

-"ax :7Q. OdO

C CRcATE -'TIE NiI1SE ARR4Y
a, I1D i=0, rs iz e

dn ?0 j=Q'Cstze-1
j 1 = i +.1
C411 3QAuqs(see1'valIval2)

p0 Cont i ue
10 Cantinus,

C SC&Lzj &R Ay NN A\D C'W'JvEIT T) nl'TE Fr"Q
C -,afllsOe~i~~1,~

C CallI i ntte( i'te~jOfl
C m4 1 rTE 1 m! . 4 Tr VO I S7 IAG : ARQ AY TO0 A F ILEr

I ; 3nl i:
3
,rslze

C 10 3 10,':size

C 41 :on t nve
C .,ritL(Pitl) (A(rp),n=O,Fsizc)
C 3,1 continje
C ZE AD FI LIE P ~A 41 IFT E S 1 '1) -4

Lin 50 j=0 ,-2.

0 a r :gnr Ic e 0,0'

:13 70 i--O.rsize
CIO 50 i=0'Csize

90 con t Iue
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AUTOREG (CONT.)

c APOLY m.ITTE NOTSE TO 1-IE AJ1)REGr'ESSIVE FILTER

1'iPO c inoenu

130 cnntinue

12D contimue
1210 continue

c FILTER l4E 1'vAGE DATA ARRAY jSI"IC THE LAOLACTAJ INvERSE FILTER
C&I I -ci~w~ %

c SCALE THE ZESi)LT1N ; 1mAE ARRAY V47,' CONVE-R7 TO BYTE FORM

C *;RITE TH- :;E'4E;?ATED IM AGE INTO A FILE
clo 153 i-0,rire

CD~ lbo i=0f:size

160 cont i lue
wilTe(2,i*!) i((),=0.r-slze)

150 C~mt i -u,
C :L)Sr VILES

C Iose(uni !~I)
cl ose(u- t=2)

NONCAUSAL

c T-41TS 04;Q GE%F'6 TFS Ali I '4GLo TE fT PC 115S1'4 A JU'4C %USAL F IR rILTER

c~S 2&;A5ETEjTS ARE U'ill-ljE) FRn-A A DATA CILE. TH4E FILIEP IS

C !ODL1E! Tu A' IMAGE . S JH40 J r NE3 SCALE , TNT3y TE , AD BYTE I 'T A E
C JSE'TI) r QE1P 3qllp m; -IArA A: QIV5 CDZ r)[-TPL~f. S.j-twr~iTlt~E -'gD.C

C IS USE) IF'A4 1'NTEo~qEfl1AFE FILTE-1114G STE' IS DESIRED.
C
c OErI'jE YA'IIABLES

iOv:;e a(:27,rz,ci0:12,0:12?) lit:(0170:2)isz, f

r -?dea I * -su-

~2 7, 0 :12) .hi te' ro~ tv(- 12, : 12a, ~xir
c OPT- FILES

oe-ij r: o i. si y 1atha~i~i~ ra'.a c mt~e ol2 ,acRgd

C 30em(us t:>, na.,p= fit iia3nr. i . ari oli. lat tve meAccess= lj re
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NONCAUSAL (CONT.)

c DErINiE P4WAmETERS
imdex I-
I ndexz 1 I24

Csi ,ezl?7

csi zeli?

,tm tze-1t size
RmN255.0-30
Ainzo.010

c READ FTLTE4 PAPAvETEPS INT] AN ARRAY

do ?0 i=Afigze,fsize
realjC3.25) coef ( i *

20 continue

10 C in ri nue
c 4EAD 1'4A;E T) BE FILTEPE) INTO All AWAY AND ! 34VERT TO 14TEGER

do 30 i=O,ri-sze

do '40 j:0,csize

340 Cotiue

call avem(ir*mej
c CONIVERT TH: TNTEEo ARRAY INTO A REAL ARRAY AND C0mPUTE THE N4EAN

dD i) iO.siz

do SO Cs 1 , t

SQ C onIntl je

SS f ir a Dr ait CT aie) j"t ea = 11 ?.5, h, l12 5, lw=

j- 70 i=V,127

n - T 1 1=1 1, ?7 *

90 ci- i ,ue
70 C :MtI ki

jsu-=j3*0

i f((rj..it .127).or.(c.jl or 127) no to 120)

120 CjnrInuT
I to0 cfti nue

try (n, 1)=j

t00 c-3mcinue

00 cinfinu.

c CALL SJ84OjT[NE TO PIvrWSE FTLTEQ FILTERF) IMAGE ARRAY
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NONCAUSAL (CONT.)

c AO r7 AE&N OF TH: TPOLt 1'4GE TO T4E FILTEREI RESULT

c C~rATE Ali IMAGE )ATA FILE
c 1 1 su-jintfile(i.)

c SCAL: Tm1 ESJLTIN: 14AGE 404AY 44nf '13'VE T TJ BYTE FOR"

call ntveme.3m
c mRIr rHE ;EN4EPArEI I4AGE INTO A FILE

03 150 i:O~psize

'1) 1 ) ( 1

150 c:)Mtiue

c CL3SC C)*Es

Ciqe(U-Nit1 '1

c I oset 3
3 t :,

e nl

CONV%

C T-41S P:O l [ElE-7TFS AVi rvlGr TEgtjQE 9SIN; ! O-CAJSAL Fl VILTE.?
C 4,')sr 2 A'ETE S A:- 031kI';E) ?' A )6t :'ILE. T-E' r1LTrQ IS

C ~J~ I) E~~ I'A'5E )ATA APQYS J' r ISP..Av.
C

:2i,te 127)27

C CSEi FILES

c DE:-PE PlUa-'ETERS%

c sII e1 
5

c PEAD FILTE4 PAQAvETEOS 111T) A14 QadY

0 nre :1' o

2~0 c~riiue

33 c -)n 1 1

c ea-l I I

ze0
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CONV (CONT.)

C CO'4vrqy JT4E 14EE £ARA jAFn A 4EAL QqAY AM:) CUA3PUTE THE MdEAN

ws3 C)?ll.

c SjT A : t T IE AF A. rW' d I E 1 4 4 rE A:ZR Ay

3:1 l'0 'zi) sie, ~

dsCr~.O ).oe s I z eSu

120-j etr 120

110 CD'?''ue

30 C D-,I lu.
e SCALC TIC ZESJLTTN; IAaCE ARZAY .A1 :OIJvERT T3 3YTE FOQ4

C311 'rovte(i',tel,Di-)
C m'1 T C TlqC ;EliEPATED I 4.'G-- INTO A F I L

0; 15'1 i=0,rsjZe
JD ISO 1=1,csize

ISO con~i-lue

C CL3Sr cl-ES
Close(u.,ir:l I

closeT 3)=2

9 too
end
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S PECOR2

C THIS PROGRAM SCLVES EQUATIONS FOR SPECTRAL CONTENT AND CORRELATION
C IN ONE DIRECTION OF A GIVEN AUTOREGRESSIVE IMAGE "MDEL. IT WITES
C THESE RESULTS TO DEVICES I AND 4 RESPECTIVELV.

C DEFINE VARIABLS 4
INTEGER I.K 

I1g

REAL-$ PIAPATEAWAPA-X.XC419-'APA

C DEFINE PARAMETERS

P1.3. 14 1526s4

ALPMA.0.399

ALPHAS.ALPMA442

C START X AXIS LOOP AND DEFINE X VALUES

DO 10 1-0.99

C DO SPECTRAL ANALYSIS

SXWa1.O/C1.0C-2.0ALPAOS(w)ALPmASI

WRITE(S.151N.Sxw

IS FORMAT(FIo.s.1x.p10.s)

10 CONTINUE

C DC CORRELATION FUNCTION SOLULTION

DO 23 -04

ALP MK. ALP NA* r

RXK(CIC.(ALPHA(I.O-ALPKAS))

RXKCI I.RXK(K)

23 CONTINUE

DO 30 K--49.49

Z-FLC.ATnO

25 FORMAT(F10.O. IX.FI0.15I

10 CONTINUE

S TCP

END
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SPECOR3

C THIS PROGUAN SOLVES EUa"TIONS :OR SPECT AL. CONTENT AND CORR"LTION

C THESE RESULTS TO DEVICES I AND 4 RESPECTIVELY.

RtEAL*6 P :ALOA. THETA.ALPAS. ALSPA. ALPH~AS.ALPMA4. TOTH4.COS2T. W.A. 9

*.COS3mW.SXWd .SXW.K.ALP ".KrHETA.ALFN2I..PZTMP.KTMP. INTERM.RXK(..49:

C EINE PARAMETERS

AL.PMA.0.9

THETA-. .0(PI/12.0)

IFCTtIETA.Eg. 0.0) TMETA.0.00000I

ALPKA.ALPMA.-S

AL.SPA.ALPNAS *ALPNA

ALPmAS.ALPMA'*2

AL P NA AAL P NA*

CCS:T-COSc( .0.TNETA)

rWOTH?4. 0.rETA

C START X AXIS LOOP AND DEFINE X VAL.UES

C DO 10 1.0.99

C W.(-1 .0"PI )*(2.0.PI.(FLOAT(I)15.0)I

C DO SPECTRAL ANALYSIS

C Ac tMETA-W

C q.TNETA.N

C COS2c'C0(.0"W)

C SXW.ALPAS-(COS(A).ALPA.(ALPHASCC':T)-(C S3).AL!PA )*(ALPMAS

C *.C=2w.)

C SNw.I0/1.0.ALPNA4.)2.I-SXWI))

C waT5131/S)d.SNw

C 15 FORMAT(FIO.S.lX.FIO.SI

C 10 CONTI NUE

C DO CORRE..ATION FUNCTION SOLUTION

DO 10 J-0.41

K .FLOAT(IJ I

ALP MA KeAL PMA* .J

KTME T A 'N"T META

KP2TMP.C 12.0.NI.THETA)-P!

KTMP-s(TNETl-P I

INTERM.(COSCKP2TP)-(ALPMASCSIKT4P ))2/(1.0.ALPHA'-(Z.OmALPHA

*S*COSCTWOTM) I)

R)(I~ji.ALPNAN/(2.0*(314(TMETA)**III.CC(COSI(TMETA)/C1.0-ALPMA

OSI I.INTERM)

GO TO 36

C IS RKIJI.(ALPNAK"IZ.0.NI I/1..O"( ( .0-AL.MAS)""21 I

IA .-I.J

,0 CONTINUE

00 Oj-IA

(s FORMAT(FIC. I.lN.FSO.1I

40 CON4TINUE

STCP

END
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SPECOR3A
1%

C THIS POWaAM SOLVES EQUATIONS FOR SPECTAL CONTENT AND CORRELATION'

C IN ONE DIRECTION OF A Givew AvToAeGmessivE ImAGe mCo~cL IT WRITES

C THESE RESULTS TO DEVICES I AND 4 RESPEC7VEL.Y.

C DEFINE VARIABLES

INTEGER I.J.m
RE.AI.* PI.A.3.Aa.AM3.As.3.AI.A:..I.K.ITERN.RXI(-49?4,).Z.A

QK.KP2.KPI .OPAS.OMAS

C DEF INE PAMADETERS

ANs. A-3).

C START X AXIS LOOP AND DEVINE X VALUE~S

D0 10 1-0.59

C DO SPECTRAL ANALYSIS

cos:w.cc.o.wI

SXW..0/SlAS1.0AU)3S(AS80)I

UNTEC3.53.SKWd

is FCRMATCID.S . II.F1C.S)

10 CONTINUE

C ZO CCRRE.ATIONd FUNCTION SOLU71ON

IVEA.EZ.3) GO TO !S

BIK(J.3.0/A9S1 NEI

Go TO SA N

KP2.FLOAT(J*2)

KPI.FLOAT(J*I)

OPAS. 1. 0.As

OMAS. 0-AS

S0 CONTINwit

DO 4z -14

Z-PLOATIjI

45 FORNAT(PIO. I. IX.F3O.IS)

40 CCNTINUE

S TOP '

END
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PIECE

T : r-111 0.11! jjri A' l'.r.: j E

30 C

R T~7 FILCS 1'1T

D~ 1 ~ntl*~. r ~~,t.~1t**Ve2lceS2r

t C t~

tt (2 - 2

l,;0

INTFILE

I N~u -1IJT "&E vrILE

c IE rI IiE v ~£LE 5
o ~i~~a0:2 01~ 12)o-O 7 17O 1

C )Pzj FILES

re- t recorlsi ze
3

.AaCI

c ZEAD 3w-%E T) 9- F1LTEqED fI4fU A. W v

0 II30 j j0,1 27

30 C:)nrt'ue
c Z'JjVqRT TM: vTE A:?'4Y fijt) £N !' 2 ?GZ. Ag.R£Y

2~9 

Ito2 
* d



INTFILE (CONT.)

cCJwp IT! It rq A -4D LOP VALJE.3 )F 1-.E IAS!E DATA AN)~ ARITE TO TEQ~1'NAL
ft9., =

j 31.,:2 15

,1) 32 i=J.1?7

32 c Dh -V

33 c'r-at( '.3

c CDWPJT,-- 'E4N 3F INESE4 AR4AY ANI Siilt.7CT it FRnA4 T,4E DATA

c so

c U u:u.lt1 S

c 3S.:''j

c .ret-(. f ts 2.150

co 3-j .127

o ot inue

c 51 2

~?

c :L) C

a SeuI U

TRANS

r IrS P40PA' Q~;a ~E AS Pla Ij 1j c A Fl I N FZE7 FOP-4AT AN.D CflNVr TS
13 AI *) £ )GQAv RE 11)AdLE F 3dJA T

1I 2a I )a( 13I a J3,a , a b

0 k:I.16

10 Co3ntalue

StoD

93



NSHP

c HI PZJ;R4 GEN-ITE3 Aj 1,41Gr TEYTI- IS J51. 'TT-- %'1156 A, a', INPUT

c --[E FIL:0,7r. S-J.PillftIE D;1'S5 IS UJSE T) Yb-;' INP-T mH'4T-
c '0 r-SN I) SVJR)UI I 'E3 SC ALE :-J' I 1 qTb Jrjr~ &'7 A SED Tj Pq P.E 1%AAGE

c )ATA A4RAYS F0: DISPLAY.%

C :)ErI'JE V0.PTA:%LrS

27), 1~

* *recir-Istze=S2.mxre:=l25)%
onen( jmnt:2,namE= * ath~a-,n.iat .3 rotate lat t Yoe= 'me. ',acces='v

c DE71E PaRj-rTERS :

o 1:2

I~"1 tort

cC cTIrE x I-TE N.JISE ARRAY
a3 10 1 =O,rsize

c - 0o:2asvseaI al2a2

20 e:)t 1 -1u 4

10 C''Mlu?
c S C L r- A ?A f .!J A %0 C3% v E I I V ~T r

callI sc3Ie(.m,1 t3)

C yR ~T r T o tT C'~J5 I'US-TGE lkQAY TO A T L~
:3) 10 :, r s ze

a ( i ( I , j 3

3 0 c -I u~

55
,,v u

C AlJ2Lf *-IT-- ',~~r E 1 ir3~is

Itf( *e.).o.(C~ It P.) -3: ts 440

110 C ntlnue *
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NSHP (CONT.)

C SC ALrE TME 4ESJLT1N:Z 14AGE £A44 AND) CVElT TO BYTE F0Q'4

C I SCI-~( q Inte.4l)

C %RI T :T' T-4:- ;E'jERAtE IMAGE 1.741 A rILE-

on 15 ) i1- ize

cr~e( ib .=1) as ).i 0'sze

t50 cn"Iue

c CLOS7 LE)

closeCu i t :1)

close (31
closeUJ)
St OD
end

PGAUS S

RrE!±*A A,.3.ZiZ2

A 1;T(-?).D~O ALGRW*

laxt JA SAi) "

SCL

,).=110I1 0.0 10

on 10 i:O.127

20 c~ntiu.
10 c~ntviu.

25 7r.a!( ns: I e-1 I at jr4- ~i .12.~i

C:3'Ir J JE S:ALr IA-6 4 C3-4F r r-i It E ;F rJ-

50 iz), 2

-395
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SCALJE (CONT.)

c A LC JLATV 4IN LQ 1, -it) %C4! CF SC AI.) ' 1G

pt .I j 100. a

o~50 i:,).I?7

f I oat( oie,, j( , . i ) I..bi~o.I) I* -- .j *a (3)e i
i f I oat ( nte ( *i ).*I-B 1 4 , t ite(t*j3

60 c 'rt'i ue
50 c3fltiUe

INTBYTE

cT-~IS Sjd4O i I INE T AkES r~ ;r &P a IY A, C 3,vE PTS IT 1'4TO A

c ZYV A4 !

cPE :?FI :04V=RSI3;N

o 0 i-.0127

4 f nt eo'e )I e~ .~d I * te 3

n t e:)( i )

i f i n)',t .1 27.i.'~~ ~ .t.5)3bmi

20 Co#t i we

30 f r %at( THE 'JuvOE~:z V 20 1S 3,0 Or QVG:5 ISi5)
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BYTEINT

THI!S 04;a WM T A'S A RYT 1 44 % YAN :UAJVER TS IT I 'IT ANNTEGE1 A RPA Y

4c DEr!'IE V*RTA9LES

c PE4F)QV :O~VERS134
n:0
so 10 i=0,127

if D% ).4.12) ama.00 v ' i It(Mine(7,)

70 c~nti-tue
10 c Dnt ''-u.

30 *fui-at( T-IE 'JU ;E: f)- 2 0 1 ITS OCUT CI QAN4GE I 1, 15)

SUBINTFILE

tmwGi- )At'

D Er1%, VZCTA LES

c J'~FMLS
o~e9(,,fl le:' (r -t .Iat-4 -ii nnar. iar st .3t us=me.O I)

c 13-oiit- -I;H A'Q L)A OALjES 39 7-iE IAAC.E )ATA1 A'4) RITE TO TERV1I4AL

cla 31 i:0,127

32 3 C it'9Ue ?

32 CnIU

-rte 1 , 33)hi aI * 1 0.

c -D-lj"- ',Ea'j OF IIrE;E4 1-?-Af AN7) SLIT;ACT IT FRrn4 THE OATA

C -10 as~ j:3,127
c suazsu,nte3C i,i)
c 4 o,% ~t i ue
c 35 :ontinje
c .. ea-zl 38t (suiI/C12i.')l12R.0)
c wfit(.3UsjMii.Ue~m

c 34i f0rfflit(i1O.eli0.31

c 3eoltinve
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SUBINTFILE

c CO'vs! 11E MlAT& I'lTn 1NTE;Eq F0D~
U5 iz0,j27

d-. 5S JZO,1?7

5 tiueii=n~'"ij+)SO

c NOTTE T.'dVL;E~ £Q4AY TO l2oxt2e DATA FILE
1:l'2j

wt' teC I.3Qjk. I

a 50 i=0.127

70 tfe.'eat(loisy
60 t mt i nv
50 flIu

cC L3S= =I.E3
ctOse~uit:I)
ret jtr5

NONC 9
sJojot i'e monc(trypiq)

c r"15 Sjj'IU ill'! tA(E' A:4 1dA;E A04ty Avl) CILTE4S IT ouIT'l A
c '4U%4CA-JSA. rQ 1-ITE;.

c :)71NEVA;IA3LES

C OPF* FIL--S

c DEr1'sr PA& ER~S

iw.ex, 3

tsitez2

c REs&) FILtE4 @A.sAoETEQS INT) A;4 AQRAYdo
10 t isofsize.fsize

UD 20 i:.fgieefgize

20 conti~u

10 c~mtiluf
cThu. T-iE 1I~JTj 44V £10 C)AD3UTE T'4E '4A% HtZ~- &NO LOol VALUES i

higha:1 00 .010

02Sq~r Is Io- *i) ,e*u

60 c~nzi-we

55 f~a~ 301t fnout i qwe or rav- opaf.:,112. 5 h--t'al 2. s. I :'d I1
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NONC (CONT.)

e FILTER f4E TW~r.E A4RAf
02 90 Anuimfneleim~gd

d3 100 vzlnlegI-inOeu?
dsu*20.010
d2 110 ixufgjgg.fsize

d2 120 izufstaePt9'f@

ifC,..ltin~e1). 2 .(~o.)t~~d~x)) 2 to 120
if( (Paw.4# . i,e%2)or. (C I t -iill a2) 320 to 0
dsu.S-(tv(r~weCI)oCOe~f(l.j))*2su"

120 c~fltinue
110 cniu

100 c~nti-lue
90 contilue

c C0VVERT TH= 13OX130 ARQAY' INTO A 1281128 AQRAY, IF NECESSARY
c :10 130 iz0,t1?7
C so 120 i=0,127
c Iqv( j * :2u, i I=3
C I140 :OntinuC
c 130 coitinje

c lose C I
ret ur I

end
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?4A10AT

P~nAkhlAt.010; A; C; D; E F A.H,I,, 1. J.
F3 A'- II '166 pUFi ArO.o;1 3*-4
71 TARTJ..O'

OOART2#I-i

F 4u Ul START1..STARIT+(I-1i START2&START2+(I*1)

13LOOPZ:ROWU.POU+i
4: RGW~= I)/ROW!

12 COLI-CJOt ( -I
1 CC'L2vCOLi+(-1

CL3+-CL2i

CGL-;.COL1i

4'

F27 -4O'I /LO

F ' CJL-COL-

):)l COL3'-COL+i
731 COL41COL3+1

Ar T r.!ii C L 1 -

3a 1i 1 LOArj

I- " '.. +AI>.

.I , ) : j j -, :

r 4-, CtA',r1  ."I

PA-I L * 4;. .

r44 - -7 I.

L 5-.*f. -

Cp vr- i, :l to DTIC docs 0

100 l~amit tully E~b1 rpioductiOtL100
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CC2

r Y4- cc fi ;i1.!:.o ,Ni , N2 .T i T2

SAFUNCTION TOi DO 2-D CTR~CULAR CONVOLUTION

F, O, IMPP~OPER AR< UMLNTZ.2

-OP i o-1I1 + 416

GETDATA

r V.
JE EI.

7 R E- . IZ T a

PUT DATA

Sr FIrL.--4 A ~cr *E.NC,

A ~ r tj"?'l. " F- fAT.:. %iE :. 7- FOkM'. - C . ::i; 1

E I

'..- *:...rE ., . - -

r~ 1&~' !~DTTC101j

p fui uiy ], tiln rp.104j



COW?

WRS~COWV F.010IO;~LL;K;Ri

aFUN4CTION4 TC GENERATE TERti, IN 2D COVAR!ANCE FCH FOR !MAGE

F*F-MEAM F
5 01040

'1 0.4i~ZpI ] LOOP :R L;KJ4*(.+/((L.K)F'((-(L.K) +F))ux/PF
44 4 )L'-L0 )/LOOPt?

45 R4 90 1 *Rl).R

CORR

it FfN~ K rC .r F z -c c- "

MVLEV

aR"1.: THE~ (P'A!' *ELA.T:OM rL1#JZTrow P..AME J -:!JTA-N,' F:''.
rw ~.~,: r4i9 .. F ~ TO OPsTA:rl rvT

r~ a~LL.t~.L.7IAZZ FOk 14ACiUAF:D PA Mt

r '!NVALID ARGueEr'EI

'"I START:N-.4-(;RPT)(0J

p41PT. 02 4 -RPT

-C rALG

0 , ;! ' - IA

~1 4I4~r,

3~~tJ Afr to.

381 A~AC5 r;.5 n r

AF * .,L-.Fn

-~ ~ ~~~A4 (0 0,~ 0) U p6W 's ' - * , , S.0. 1*



FF2 DLEV

* -U I

r:' AO-E! i..

c i COV6;0 ,D- OCv

iFL'TION TO GENER~ATE T Tfh. .n2! COVAR IAMOE PEN FOk< IhAtI'E

F 'F--EAJ F
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APPENDIX B

DERIVATION OF THE POWER SPECTRUM AND AUTOCORRELATION
FUNCTION FOR THE TWO POLE AUTOREGRESSIVE MODEL

Power Spectrum

IH(eJw)1 2 = H(eJw)-(H(eJw))* = H(eJ)H(e-J )

In this case:

H(e1w) = 1 H(e ) = 1 +ejW

Calculating H(eiw)H(e-Jw):

1 1 1

(1+te- jW) (1+ceJW) = l+ce-jw+ejW+ 2  1+2acos (w)+a

The final result is:
Sy(w) = IH(eJw) [2  =1( .)

It~iW2i (B.1)
(1+a2 )+2acos ()

Autocorrelation Function

Starting with H(z) for this case:
1

H(z) = 1 +az -

Per Ref. 7:p. 158:

Z-1 [H(z)] = h(n) = (-)n'u(n) for a < 1
(u(n) is the unit step function)

Per Ref. 5:pp. 391-395, for the white noise input case:

00Soo9

Ry(-) I h(n)-h(n-Z) (B.2)

Substituting h(n) above into Eq. B.2

104
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00

Ry(2.) = ( n - £ 9 > 0
n=2

900 (-a) 2n k > 0(-(II
The summation term may also be expressed as:

00 009-1
2n y (_)2n I (-a) 2n

A -a) = -j (-a)n=2. n=0 n=0

Per Ref.12:p. 8, the summation terms on the right are equalto: .

co 2n 1 Z-1 2n = 1- (-) 2k ( < 1)
S - (a<1) 2.i 2 29

n=0 - (- )1 n=0 1 -X(-1)

As a result:

2n 1 1 -(-a) 2 (-a) 2Z

I (-a) -2 2 2-a<1n=2. 1(_a 2) 1-(_a)2 i-(_a)2

Substituting and using (-a)2  a2 yields:

1 "i (-a -a) 9 > 0 and a < 1 (B.3)
Ry. 7-7 '1 =O 2 - 2.>ad~ B3

'0
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APPENDIX C

GRAPHICAL RESULTS FOR THE POWER SPECTRUM AND AUTOCORRELATION
FUNCTION FOR THE TWO POLE AUTOREGRESSIVE MODEL

Power Spectrum

ALPHA=0.95 ALPHA=-0.5
a

-31.16 0.00 &.15 -3.16 0,00 3.16

OMEGA OM EGA

ALPHA=-0.5 ALPHA=0.85

va

C,

a. C

3.31 0.00 .15 -3.13 0.00 3.5

OMEGA OMEGA

ALPHA=0.5 ALPHA=-.8

Z a

-3.16 0.00 3.15 ' 10 0 I

OMEGA OMEGA
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ALPHA=O .75 ALPHA=O.1

<

-3.15 0.00 3.16 -3.10 0.00 3.16
OMEGA OMEGA

Autocorrelation Function

ALPHA=O.5 ALDHA=O.95

0& 0- 50 J

LL
ALPIIA=-O.95 ALIPIHA=0.8

d~dl~II(ILIIIkI.) -- ------

-50 0 50 -50 0 5
L L
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ALPHA=0.25 ALPHA=-O.25

. .. ... ... . .. .. ... ".. .. .... . . . .. .. ... . . . . . ... . .

-GL 0 L

711

-- 0 0 80 -60 0 60
L L

ALPHA=O.1 ALPHA=O.75

I *-0 0O 50 -6 0 6 o
L L

108
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APPENDIX D

DERIVATION OF THE POWER SPECTRUM AND AUTOCORRELATION

FUNCTION FOR THE FOUR POLE AUTOREGRESSIVE MODEL

Power Spectrum

IH(ejw)1 2 
-H(ej)-H(eL'3)

In this case:_ _ _ _ _ __ _ _ _ _ _ _

H(e-Jw) - -je iW je = j (6+fW) 13(-)

H~j)1 1
H(eJW) =-je e-iw (- jO -jw) 1 - j (ew) e (O-w) +a2 e-j2w

Multiplying the above expressions yields:

1H(ejw)H(e)jw) = ~(6w
j~~( W -(6-w) 2(Ow 2 -j2 0 (Ow 3 - j~e w)

1-e -cxe + e -e -c Xe +

+a2 ej 2w- 3 ej (8+w) 3 e-j (8+w) +a4

Combining terms:

H (e )W-.H (e)jw)

- a3 e (Ow)+e-j(e+w) )+a 2 (e~ 2w~-j2w)

j te (6-W) -Nw) j(e (6+W) -j (e+w))

Using Euler's relation and combining terms:.,

H (e) )H (e-jw) =

l+ct +2 (a 2_COS~ew [ct 3+0(]+(X 2cos(2e)-cs(e+w)

< 3 2X[X+0.]+ t cos(20)
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Using cos(8-w) + cos(8+w) = 2cos(6)cos(w), and since

Sy(w)= H(e-).)H(ew). 2 , with G2 = 1 the final result is:

Sy (W) 4  2 3 2 (D.1)
y I+2(a -2[ 3- a]cos(e)oOs(W)+a (cos(2e)+cos(2w)))

Autocorrelation Function

H(z) - l 1+c2 zf je ) Z 7
l-eJ z -- e-J z-l+t2z-2 l (eJ +e- j 6) Z-l+O2z - 2

Using Euler's relation:

H(z) =-1+a 2z-2 Izl > IaI
l-2ccs(6)z ic

Per Ref. 7:pp. 204-216, partial fraction expansion can be

used to find the inverse Z transform. To do so H(z) can be

expressed in the form:

H(z) z
(laee- z - ) (lee 0z- I  (z-ae-J ) (z--je e

Using the partial fraction expansion and table look up [Ref.

7:p. 158] yields:

n
h(n) a cos (ne+ -u(n) for a < 1 (D.2)

Since cos(e - -) sin(e), the final expression for h(n) is:

n
h(n) = a sin((n+l)e)-u(n) a 1 (D.3)
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For simplicity in further derivation of Ry(k) based on h(n),

Eq. D.2 will be used.

Using the expression for the autocorrelation function of

a random process represented by the above filter with a

white noise input [Ref. 4:pp. 391-395]:

Ry(-) h(n)-h(n-0) I -2n-cos(ne+
2 2

sin (0) n=

cos ((n-Z) e+et) (D.4)

n = Z in the summation index since h(n) is causal. Z is

assumed to be greater than zero here. For £< O Ry(z)

Ry(-) by symmetry of the autocorrelation function [Ref.

5:p. 388], so we can proceed assuming only positive values

of k.

Using the trigonometric identity for a product of

cosines:

- Z CO 2n 1 1Ry(i) 2 _ [T -.cos(£0)-ecxs(2ne-ke+20-7)1 £ > 0
sin2 (e) n-iX

I.

R) s (£) 2n i 2n(£) "sin2  +- 2 i * .(2ne-0 Q+28 -t) (D.5)
2sin (e) n=2. 2sin2 (e) n=k

Using I - - and standard geometric progression
n=9 n=0 n=0

identities [Ref. ]2:p. 8]:

alan
0= n=O

iii .,,%
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For the first term in Ry(z)

CO 00-1 I2Z
.2n 2 .2n 1 -a7_

n=- n=O n=0 1-a 1-a

22.
a (D.6)

1-a

For the second term in Ry(2.):

let 4 = - ke + 2e -

Using Euler's relation:

s(2 ) = e (2ne+4) + -j (2ne+)

2n1 2n ej (2n0+) + e-j (2n9+,))]
a2e .cos(2n+)) = a -

n=2. ,=2

= 01 2n.e j ( 2n e + ) +1 a2n.e -j(2n 8+ 0) (D.7)

n=k n=Z

For large n, it is evident that the a2n term will tend

to make the term in each sum approach 0 for a < 1, and thus

ensures convergence and a closed form expression for each

term. Pursuing the mathematics required to find this closed

form expression we have:

2n e(2nl+) e j  (e)2n e j  je 2n - ( )2nl)2-- 2 (-3@ 2  - (e -
n2 n n=O

1i
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1 1 a 2n -(2ne+o) e 1 1- (ae )2 -;= 2 [ 1-( ) 2 1-a e)2 ]

2. " j (2O+¢)
CL 2 e (D.8)

2 (1- (aee) 2)

For the conjugate term we must have:

1 2n2n (2ne+ ) a29. e-j (209+p)
2 1 .e - () (D.9)

n=9. 2 (- 6) 2 )

Next a common denominator must be found to sum these two

terms:

2 .ej (2_+_) _ 2)(l 2-e ) 2
2 (1- (aej ) 2 (I (ae j ) 2,

2aR j (2 e+() - (2 Z+2) ej (28Z-2 e+O)
-ae .a

j e2_ -j0 2 42 (1- (e) 2(e ) +4

2. e-j (2e£+) (1-(a je 2

-j 2 j )2
2-(1- e) 2 ) (i- (ae

2Ze-j (26k+f) - (2Z+2)e- j (28Z-2e+ )
-L e 0 - e

2(i-(ae e) 2_ (ae-j ) 2+4a

By Euler's relation:

1 -(eJ) 2 -(aee) 2+C4 = 1-2a 2cos(2)+a 4

Adding the terms with the common denominator yields:

2 Re j(2ek+)_ 2 j(2e£-28+0) +e-j(29+.)_et - (2H-2e+ )]

2 (1-2x cos(2)+a4
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Again using Euler's relation the above expression reduces

to:

22.

a [cos(22e+0)-a cos(26£-2e+4)] (D. 0)

1-2a2os (26) +a
4

which is the sum of the last two terms in Eq. (D.7).

Substituting Eq. (D.1O) and Eq. (D.6) into Eq. (D.5) yields:

-Z 22
R (9) = 2()7_
Y 2sin (e) 1-a

-£. 22 2
+ a [ [cos(2ez+)-a cos(2eR-2e+p)] (D. 11)

2sin2 () 1-2a 2cos(2e)+a
4

Combining and canceling terms and substituting for ' and

noticing that the same result must hold for Z < 0 we have:

R (2.) = a [cxs( 2.0) cos((2+2~,)e-Tr)-a ms(2.I0-r)_ (D.12)
2sin2 (a) 1-a l-2a2 cos(2e)+a 4
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APPENDIX E

GRAPHIgCAL RESULTS FOR THE POWER SPECTRUM AND AUTOCORRELATION
FUNCTION FOR THE FOUR POLE AUTOREGRESSIVE MODEL

Power Spectrum

ALPHA=0.8 THETA=PI/3 ALPHA=0.7 THETA=PI/3

010
-S.15 0.00 3.15 -3.16 0.00 3.16

OMEGA OMEGA
4TPHA=0.9 THETA--O ALPHA=0.9 THETA=PI/3
* --

I

z

0

-. 16 0.00 3.18 -S.15 0.00 3.15

OMEGA OMEGA

ALPHA=O.8 THETA=PI/, ALPHAz0.9 THEIAPI/6

-2.18 0.00 3.15 -iS.1 0.00 3.15

OMEGA OMtEGA eNC

115



ALPHAO.9 THETA=2>-P1'/3 .ALPHA=O.6 THETA=21sP1.T/3

--

-3.16 0.00 3.16 -S36 0.00 3.16
OMEGA OMEGA

ALPHAO-.9 THETA=57'PI/12 ALPHA=.6 THETA=PI/6

-31 0.030 3J .031

-3.15 0.00 &.15 -3.16 0.00 3.15
OMEGA OMEGA

ALPHAQ.6 THETA=5P16 APA. HT=I



aa

ALPHA=0.6 THETA5*PI/12 ALPHA=0.6 THETA-

I-...

1 'I

-8.16 0.00 3.16 -00.16 0.00 36
OMEGA OMEGA >

ALPHA=0.9 THEUI'A=5*PI/12

0.

-3.06 0.0OMEGA

Autocorrelation Function

ALPHA--O.8 THErAPI/3 ALPHA=0.7 TH-ITA=PI/3

...... ..... .... .......

L 0L

117LI* n _ _ _ _ _ _ _ _ _

! . ..,. -....- , . .. ,:,.:.,+......e.-,O,,; g.. , .;.o .,' ,..., - 0 .:.;.+.'-'-'. -':? ''' .+ + . . .. .-..



ALPHA--0.9 THETA=O ALPHA=0.9 THETA=PI/3

.°......... . .... .... .. .. .. . . . . . . ... +........ . ... . . ........ ... .......

ALPHA=0.8 THErA=PI/2 ALPHA=0.9 THETA=PI/6

....•.. . ........... . .......... -........... . .. ... . . . . . . . . . . . . ..

*-'0*

.......... ... .. . ....... .... ..... ............ I .......... •......... ............

-400 0 S60
L L

ALPHA=0.9 THETA=2*PI/3ALPHA--O.6 THETA=2*PI/3

.. ... .. . ... . .. .. . . . . .. . . . . . . ..

-500 0
L L

ALPHA=0.9 THETA--7*P/12 AL'PHA=0.6 THETA=PI/6

.. ..... .y J .. .. .. 1... ... ..... .. . ....

. . .

000 @0 -6L 6o

LL

118



,.p

ALPHA=0.6 THETA=5*PI/6 ALPHA--0.5 THEA=PI/1

.. .. .. . ......... o. ...... . .......... ,.........

-bO 0O 5"
.. .... ... : ........... .......... ., .......... ,.. . . . .

.......... .. .

"0 -b .o'o ? so "

L L

ALPHA--0.5 THETA=PI/6 ALPHA--0.9 THETA=5*PI/6

.. ..... ... . . ..

........... •. ...... °"....... " °......... .......... ". ... . ... •.........

0 i

L L
ALPHA0.6 THETA5*Pl/I2 ALPHA=0.6 THErA=O

............................... . . ... .

-6 0 -50 0 i0

ALPHA=O.9 THDTA=*P1/1

1

*I

1.19 ,i

. ,. .r.,,:',:, . : ; ; , ; ;y ; : ; : : ;: x : : : ; 5 : 6



APPENDIX F

DERIVATION OF THE POWER SPECTRUM AND AUTOCORRELATION
FUNCTION FOR THE FOUR POLE AUTOREGRESSIVE MODEL

(WITH TWO POLES ON THE REAL AXIS)

Power Spectrum

Using initial results from Appendix D with the necessary

modifications (including 0= 0) we have:

H(e-j) = 1
l-aaeJw-be JW j+aobe 2w

1
H(eJw) - iae-Jct eJe-jW+ate-J 2w

Therefore:

H(eJ) - H (e-Jw) la1d + 2_aJ+2
1-a e-w -a~jWae -wa e jw+a 2+ac*m

a +Oav -a a ab

- aabe- - beJ+ aL-O'ae

eJ2- 2w ejw- 2 j+2 2
+ae -atbe -a b%ca~b

Combining terms and using Euler's relation:

H(eJw) -•H (e-J w i_(a+b 2eb 2)a • 2cos(w) +2abOOS(2w)+2xa

2 22
+ 2 aab4aL+aa%
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Assuming G2 = 1 and since Sy(w) = H(eJw).H(e-Jw)-0 2 , the

final result is:

1
-Y 2 2 2

1-2 (ca+%+ca b+ca ) cos ( )+2aaabCOS (2w) + 2+2a a,

+ 2 22 (F.1)

Autocorrelation Function

1
H(z) = _1 JO-z- 1- 1e-ja z-l aZ-2

l-a Z~

Letting 0 = 0

2
1 z

H(z) 1 -
1- (aa+ab) z-1 +aZ - 2  z 2 (a( a Z+a A

IZI > a

Expanding in terms of partial fractions we have:

H(z) = • + z
a-% Z-aa %-aa z-ab

This corresponds to the impulse response

h(n) - "a a + < (F.2)

Proceeding as in Appendix D:
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00 0 C(n~l n+l n+l- k n+l-.
Ry Z) h(n).h(n-.) Z ( a ( t +'%XrlF=--M nV=9 caO' %bc'a 0ca% t %a

(2Z > 0)

0 t2n+2-k ( n+l n+l-Z a n+1-k n+1
R(. =~ a ca -+ ca 0

y n=Z) (Ot a %) 2 a%+ F ()-ca) (Oacb

2n+2-.
+ b 21 (k. > 0) (F. 3)

(%tbcta)

Since (a-b abo

(ca%() 2= (%( a ) - (ca& % =cba (-a) aa-%)

SO:

y (a a-b a _-9 a a -

1-Z. n 2- Z~~ 2n>

Continuing with the same principles and assumptions as in

Appendix D, we have:

002n 00~ 2n 9,-l2n _ 1 1-cc2 Z C, 2 Z
I C I(X 1O 2 22n7--Z n O rr-O -0( 1-ct

00 n n00 n= 91-1 nict z O*t 9
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Making the appropriate substitutions in the expression for

Ry(Z), we have:

R 2-9. )a 1-9, la%)
(. (aa%)2 [  (a -2ab [a--aa2

z 2 2Z
1 - kb a a) + -b 2 -- ) (k> 0) (F.4)ab a ( -1-a) + b (l-b --)

Combining terms yields the final expression:

2+Z 9,+l Z+l 2+.
Ry() = ca 2b-a + b

2 2- 1- a (F.5)
(otacb 1 -aa afl 1-c40
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APPENDIX G

GRAPHICAL RESULTS FOR THE POWER SPECTRUM AND AUTO-

CORRLATION FUNCTION FOR THE FOUR POLE AUTO- '
REGRESSIVE MODEL (WITH TWO POLES ON THE REAL AXIS)

Power Spectrum AO9B .
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APPENDIX H

LAPLACIAN INVERSE FILTER FORMS

I94VRSE FIR FILTER INVERSE riR FILTER
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APPENDIX I

CONVOLUTION OF LAPALACIAN DIFFERENCE OPERATOR AND

VARIOUS SIZE FIR INVERSE FILTERS]

CONMU1I~ Of LAPLAC&AN AftD 115 3m3 t*44S1 C060VOUTIO OF LAPLACIAN AND 1V$ 5.5 04V[*SE
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